
Hermes: Algorithm-System Co-design for Efficient
Retrieval-Augmented Generation At Scale

Michael Shen
Cornell University

New York, New York, USA
mts247@cornell.edu

Muhammad Umar
Cornell University

Ithaca, New York, USA
mu94@cornell.edu

Kiwan Maeng
Pennsylvania State University

University Park, Pennsylvania, USA
kvm6242@psu.edu

G. Edward Suh
NVIDIA, Cornell University

Ithaca, New York, USA
esuh@nvidia.com

Udit Gupta
Cornell University

New York, New York, USA
ugupta@cornell.edu

Abstract
The rapid advancement of Large Language Models (LLMs) as well
as the constantly expanding amount of data make keeping the latest
models constantly up-to-date a challenge. The high computational
cost required to constantly retrain models to handle evolving data
has led to the development of Retrieval-Augmented Generation
(RAG). RAG presents a promising solution that enables LLMs to
access and incorporate real-time information from external datas-
tores, thus minimizing the need for retraining to update the infor-
mation available to an LLM. However, as the RAG datastores used
to augment information expand into the range of trillions of tokens,
retrieval overheads become significant, impacting latency, through-
put, and energy efficiency. To address this, we propose Hermes, an
algorithm-systems co-design framework that addresses the unique
bottlenecks of large-scale RAG systems. Hermes mitigates retrieval
latency by partitioning and distributing datastores across multi-
ple nodes, while also enhancing throughput and energy efficiency
through an intelligent hierarchical search that dynamically directs
queries to optimized subsets of the datastore. On open-source RAG
datastores and models, we demonstrate Hermes optimizes end-to-
end latency and energy by up to 9.33× and 2.10×, without sacrificing
retrieval quality for at-scale trillion token retrieval datastores.

CCS Concepts
• Computer systems organization → Architectures; • Com-
puting methodologies→ Natural language processing; • In-
formation systems→ Information retrieval.

Keywords
Retrieval-Augmented Generation, Machine Learning Systems, Vec-
tor Search, Large Language Models, Retrieval and Ranking Models,
k-Nearest Neighbor (kNN) Search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’25, June 21–25, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731076

ACM Reference Format:
Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit
Gupta. 2025. Hermes: Algorithm-System Co-design for Efficient Retrieval-
Augmented Generation At Scale. In Proceedings of the 52nd Annual Inter-
national Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025,
Tokyo, Japan. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3695053.3731076

1 Introduction
The rapid rise in the use of Large Language Models (LLMs) across
everyday, industrial, and academic domains has fueled an explo-
sion of research in the field. Resultingly, over the last few years,
state-of-the-art LLMs have grown exponentially to hundreds of
billions of parameters, realizing significant accuracy and quality of
service improvements [4, 19]. In addition to growing model sizes,
the number of consumers and enterprise customers using LLMs
continues to grow. The tremendous growth in model capacity and
deployment scale poses new challenges for LLM’s at-scale. First, the
computational demands for retraining LLMs with new and continu-
ally evolving data have become increasingly daunting [19]. Second,
LLMs have been shown to suffer from hallucinations, producing
incoherent or inconsistent outputs [30].

One promising solution to addressing these challenges is Retrieval-
Augmented Generation (RAG) [24]. Intuitively, RAG-based LLMs
incorporate real-time information from mutable external databases.
Encoded input queries from users are used as key vectors to in-
dex into and search large vector databases for relevant context via
information retrieval or similarity search processes; the relevant
context and original input query are then provided as input to
LLMs. The use of contextual information from vector databases
allows RAG-based LLMs to (1) produce relevant, current output
without needing frequent re-training, (2) ground generated outputs
to reduce hallucinations (as seen in Figure 1). Relevant contexts are
repeatedly retrieved during the generation process to continuously
improve the quality of the generated outputs, a technique known
as retrieval striding.

While RAG-based LLMs reduce training requirements for mod-
ern LLMs and help mitigate hallucinations, they also introduce new
challenges to efficient deployment at-scale. Primarily, as the size of
knowledge datastores used to augment information continues to
grow, the overhead involved in conducting information retrieval
or similarity search becomes a major bottleneck. Similarity search
on large, TB-scale datastores stress memory systems, resulting

https://orcid.org/0000-0001-8834-4227
https://orcid.org/0000-0001-7460-1341
https://orcid.org/0000-0002-0321-8406
https://orcid.org/0000-0001-6409-9888
https://orcid.org/0000-0002-9118-0961
https://doi.org/10.1145/3695053.3731076
https://doi.org/10.1145/3695053.3731076
https://doi.org/10.1145/3695053.3731076

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

Question Response

User LLM
Retrieval

Query
Retrieved
Contexts

Context Enhanced
Question

9.3x Speedup, 2.1x Energy Savings
Trillion Token

Datastores

Our Solution: Hermes
- Distributed Datastores
- Hierarchical Search
- DVFS

RAG Inference

Datastore Size

La
te

nc
y

Retrieval Overhead
Grows Compared to

Inference

Figure 1: Retrieval-Augmented Generation enables dynamic
LLM updates but incurs high latency with at-scale trillion-
token datastores. Hermes addresses this with a distributed,
hierarchical search framework.

in high latency and energy overheads as well as low throughput.
Additionally, designing an efficient retrieval index further compli-
cates the process, making seamless integration into real-time RAG
applications challenging.

Given the overheads of RAG, systems researchers have begun
exploring methods for optimizing RAG-based LLMs [1, 15–17, 49].
For example, researchers have investigated methods to pipeline
and overlap retrieval and LLM inference stages [16] and cache
frequently accessed documents and LLM prompt computations [17].
While these optimizations are effective for RAG-based LLMs with
modestly sized datastores (i.e., only up to a few hundred billion
tokens), they overlook the unique challenges of deploying RAG
with large datastores (often trillions of tokens in size [3, 41]). For
instance, a recently released retrieval datastore dedicated to RAG
comprises of 1.4 trillion tokens [41], an order of magnitude larger
than studied in prior work. At this scale, we find the retrieval stage
of RAG once again introduces significant overheads, not only in
terms of latency but also throughput and energy efficiency.

In this paper, we introduce Hermes (as seen in Figure 1), an
algorithm-systems co-design framework that addresses the key
bottlenecks encountered in large-scale RAG systems. We begin by
conducting a detailed characterization of the operational challenges
posed by large-scale datastores. Our characterization highlights
critical aspects of the retrieval process, with a focus on memory
usage, latency, throughput, and energy bottlenecks. We then pro-
pose Hermes, which reduces the latency, and memory requirements
of the retrieval stage by splitting and distributing the large datas-
tore across several machines. However, naive distribution of the
datastore requires aggregation of the retrieval across all machines.
Critically, Hermes also improves the throughput and energy effi-
ciency of the system by selectively routing each query to a subset
of machines by ranking machines via a fast, limited-scale sampling
search, all while retaining the accuracy of retrieval. Using this ap-
proach, Hermes achieves improvement in inference time-to-first
token (TTFT), end-to-end latency, throughput, and energy. The
main contributions of our work are as follows:

• We investigate RAG systems from a large-scale deployment
perspective, uncovering significant challenges in trillion-
token datastores, where RAG experiences prohibitively long
TTFT and overall end-to-end latencies, even with enhance-
ments proposed by prior research.

• We propose Hermes, an algorithm-systems co-design frame-
work that reduces retrieval overhead by partitioning and

143

240

997

777

Encoder

ID Text

0.12 ... 0.78

-0.11 ... -0.39

0.40 ... 0.55

0.02 ... -0.22
Embedding Clustering Search Index

(IVF)

Figure 2: RAG datastores encode document chunks into em-
beddings and are used in conjunction with the search index
for efficient retrieval. Retrieved IDs are used to access corre-
sponding chunks.

distributing datastores across multiple CPU nodes, enabling
more efficient and methodical search strategies. By employ-
ing an intelligent hierarchical search that dynamically directs
queries to optimized subsets of the datastore, Hermes signif-
icantly enhances throughput and energy efficiency, shifting
the critical path for RAG from CPU-based retrieval to GPU-
based inference.

• We highlight the performance advantages Hermes offers
over previous solutions and demonstrate how our enhance-
ments continue to deliver improvements even with massive
trillion-token datastores, where earlier proposed methods
have struggled. We demonstrate that Hermes can achieve
up to 9.33× speedup in latency, 9.29× throughput, and 2.10×
energy efficiency improvements over a monolithic large data-
store for context retrieval.

We have open-sourced the Hermes infrastructure, including
index construction tools, accuracy evaluation scripts, and online
serving optimizations. This release aims to support and accelerate
follow-on research on efficient RAG with large-scale datastores.
The live GitHub repository is available at: https://github.com/S4AI-
CornellTech/Hermes.

2 Background: Retrieval-Augmented
Generation

While traditional pretrained language models process queries using
only the information stored within their fixed parameters, RAG
pipelines differ by incorporating a dynamic, non-parametric datas-
tore. Instead of relying solely on learned knowledge, RAG models
query this datastore for relevant external contexts, which are then
augmented with the original query before being processed by the
model. This retrieval step allows RAG models to generate more
informed and contextually relevant responses. This non-parametric
datastore is incorporated into the LLM through 2 distinct stages:

• Offline Search Index Creation: where the dataset is pro-
cessed for relevant information, transformed into a format
more suitable for the search paradigm (i.e. vector embed-
dings for dense searches in our case), and organized into a
search index to enable fast and efficient retrieval of relevant
chunks during inference.

• Online Inference: where themodel interacts with the search
index in real-time to retrieve and integrate relevant data
chunks, augmenting the query with the external knowledge
from the datastore to improve accuracy.

https://github.com/S4AI-CornellTech/Hermes
https://github.com/S4AI-CornellTech/Hermes

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

Encoder Search Index Chunk Datastore Augmentation Inference

Query

0.56 ... -0.39
Embedding

143 240 997 777
Document IDs

Document Chunks

Query

Enhanced Query
+

Strided Retrieval

Ouput Tokens

Figure 3: Online RAG inference encodes the query to retrieve
document IDs, maps them to document text chunks, and ap-
pends them to the query. Every 𝑠 tokens, the query is updated
with generated output, repeating until completion.

32 128
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(s
)

32 128
Batch Size

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (

TP
S)

HNSW IVF
Index Type

0

25

50

75

100

125

150

St
or

ag
e

(G
B)

HNSW IVF

Figure 4: Comparison of systems metrics for HNSW and IVF
10B token indices built on 100M document subsets of Com-
mon Crawl [36]. HNSW indices achieve more than 2.4x la-
tency (0.40s vs 0.97s) and throughput (321 QPS vs 131 QPS)
improvements at a batch size of 128, but have a 2.3x higher
memory requirement (166GB vs 71GB)

2.1 Index Creation
For efficient information retrieval during online inference, non-
parametric datastores must be thoughtfully structured to reduce the
search space without compromising accuracy. This goal is typically
achieved by creating streamlined yet powerful vector search indices.
This is done by first partitioning the datastore documents into
manageable chunks (groups of tokens with specified lengths to
better facilitate retrieval) and then encoding them. Afterwords,
a framework such as FAISS [6] is typically used to organize the
embeddings for efficient similarity searches. The full index creation
workflow can be seen in Figure 2.

While prior research has explored sparse text-based search in-
dices, dense vector-based search indices have gained prominence
among researchers due to their ability to more effectively identify
semantic similarity between a query and document vectors [40].
Sparse retrieval relies on traditional term-based methods and exact
matching, which make them better suited for handling rare terms
that cannot be adequately represented through embeddings. Sparse
retrieval is limited in application, however, due to their inability to
effectively capture contextual relationships between words the way
embeddings can. Although research has explored combining sparse
and dense retrieval methods [40], we focus our efforts on studying
and refining dense vector indices, as they are more effective for
RAG applications.

The task of retrieving document chunks relevant to a query in
dense vector indices is a vector nearest-neighbor search problem.
While we can naively use a brute-force search to return relevant
chunks, it is more efficient to use an approximate nearest-neighbor
(ANN) algorithm to reduce the search space of the vector search.
A wide variety of such algorithms exist, that span graphs, trees,
hashing, and clustering-based algorithms [34]. In recent works

Table 1: Comparison of different IVF quantization schemes.
We choose SQ8 as the point that best optimizes memory
without adversely hurting recall.

Recall Vector Size (Bytes)

Flat 0.958 3072
SQ8 0.942 768
SQ4 0.748 384
PQ256 0.585 256
OPQ256 0.596 256
PQ384 0.748 384
OPQ384 0.742 384

[16, 17, 31], however, it has been demonstrated that in the high-
dimensional LLM embedding regime, two types of vector indices
exhibit good performance in terms of accuracy and throughput:
Hierarchical Navigable Small World (HNSW) [29] and Inverted File
(IVF)[50]. HNSW is a proximity-graph-based index, whereas IVF is
a clustering-based index. Although HNSW can deliver significantly
higher throughput with a similar recall as the IVF index, the storage
demands for HNSW indices (due to bidirectional links that need to
be stored to connect nodes of the graph structure) are excessively
large. At scale, these memory requirements surpass the capacity of
most state-of-the-art CPUs, rendering HNSW impractical for the
systems we aim to target. We provide an analysis of the metrics
achievable by a small 10-billion-token HNSW and IVF index in
Figure 4.

Inverted File: IVF clusters similar data together, enabling fo-
cused searches within these clusters rather than the entire dataset.
The clustering is usually performed using a standard algorithm
such as K-Means using Lloyd’s algorithm [28]. At construction
time, the nlist parameter controls how many clusters the dataset
is divided into. Typically, nlist is ∝

√
𝑁 where 𝑁 represents the

total number of vectors in the datastore. At search time, the nProbe
parameter, controls how many unique clusters are searched within
the IVF index. This parameter can be adjusted to balance latency
and accuracy trade-offs. IVF can be combined with quantization
schemes such as simple scalar quantization (SQ) and Product Quan-
tization [13] to further decrease the index’s latency and memory
footprint, though this comes at some cost to the accuracy. We pro-
vide an analysis of how a variety of state-of-the-art quantization
techniques affect the recall and vector size of our IVF indices in
Table 1. In this work, we focus on IVF with the SQ8 quantization
to develop our efficient retrieval scheme, as this approach opti-
mizes memory footprint without hurting recall. Indices like HNSW
incur too much memory overhead, making them impractical for
at-scale deployment, while quantization methods other than SQ8
offer minimal benefits relative to their impact on recall.

2.2 Retrieval Enhanced Inference
In a RAG-enhanced LLM, the query is encoded to produce a vector
for searching the index. This encoded query retrieves the IDs of the
𝑘 closest neighbors, and a lookup then fetches the corresponding
document text chunks. The retrieved document chunks can be re-
ranked for relevance, using either similarity scores or advanced
neural methods, and then integrated into inference by prepending
them to the query [39] or cross-attending to their embeddings
[3]. This enhanced query is then used to generate output tokens.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

64 32 16 8 4 2 1
Stride

18

20

Pe
rp

le
xi

ty

In-ContextRALM Stride

64 32 16 8 4 2 1
Stride

0

25

50

75

Re
tr

ie
va

l L
at

en
cy

 (
s)

In-Context

RALM Strid
e

GPT-2 762M GPT-2 1.5B RETRO 578M Retrieval Latency 10B Retrieval Latency 100B

Figure 5: Prior works [16, 39] show that increasing retrieval
stride allows models with half the parameters to match the
accuracy of larger models, but at the cost of exponentially
higher retrieval times. Circles indicate stride lengths identi-
fied as optimal for output accuracy in prior work [39].

Figure 3 presents a taxonomy of the end-to-end inference flow
in RAG systems, illustrating how the non-parametric datastore is
integrated with the LLM.

In state-of-the-art RAG systems, multiple retrieval iterations
occur per query to refresh the documents used for generating every
𝑠 tokens [39], a process known as retrieval striding. This approach
aims to improve the accuracy of the final generated tokens by
continuously updating the document set, allowing for more relevant
information to be incorporated as the context changes over time
from stride to stride.

Recent work from industry and academia, as shown in Figure 5,
has demonstrated that retrieving new context after generating a
number of tokens can improve overall LLM perplexity and quality
of output [3, 16, 39]. As seen in Figure 5 increasing the retrieval
stride frequency allows smaller inference models to achieve sim-
ilar perplexity to models that have 2× the number of parameters,
showing that a significant proportion of model output generation
reliability can be placed on retrieval frequency. Unfortunately, re-
trieving new context every 4 tokens, which was suggested as an
ideal point for optimizing accuracy in prior works [39], comes at a
significant cost; for instance, for a 100-billion token scale datastore
retrieving context every 4 versus 64 tokens increases the end-to-end
latency by 12.12× (from 32.0s to 388.5s). For the purposes of our
work, we choose a more conservative stride length of 16 to bal-
ance accuracy and run-time costs as a baseline; our final evaluation
studies the impact of our design on various stride lengths.

3 Understanding System Bottlenecks in RAG
In this section, we look at the bottlenecks and trade-offs that exist
with current RAG systems. We focus on performance and efficiency
bottlenecks that arise when scaling to large datastore sizes found
in publicly available datasets (e.g., Massive-DS [41]). We also show
how, even with existing enhancements proposed by prior works,
retrieval continues to throttle the performance of RAG-based LLMs.

TAKEAWAY 1: The retrieval phase and selection of re-
trieval stride length of RAG introduce overheads that scale
linearly with datastore size. This leads to significant TTFT
and end-to-end latency overheads in large-scale datastores.
Figure 6 illustrates the TTFT and end-to-end latency of RAG-based
LLMs as we scale the retrieval datastore size from 10B to 100B
tokens. We set batch size to 32 across the entire pipeline. The in-
ference model implements Gemma2-9B [43] with 512 input tokens
and 256 output tokens running on an NVIDIA A6000 Ada GPU with

10B 100B
Datastore Size (Tokens)

0

1

2

3

4

5

6

TT
FT

 (
s) 800

850

900
MassiveDS

100M 10B 1T
0

50

100

Datastore Size (Tokens)

E2
E

(s
)

Encoding Retrieval Prefill Decoding

Figure 6: TTFT latency for 100B-token indices ismuch higher
than for 10B, with end-to-end latency growing exponentially
at a stride of 16 when generating 256 output tokens, reaching
several minutes for 1T-token datastores at a batch size of 32.
Extrapolated 1T-token latencies are shown in lighter color.

100M 1B 10B100B 1T

100

101

102

103

Th
ro

ug
hp

ut
 (

Q
PS

)

100M 1B 10B100B 1T

Datastore Size (Tokens)

101

102

103

104

En
er

gy
 (

J)

100M 1B 10B100B 1T
1GB

10GB

100GB

1TB

10TB

St
or

ag
e

Si
ze

Figure 7: Throughput, Energy, andMemory Footprint scaling
trends for an IVF retrieval index with 8-bit scalar quantiza-
tion for different datastore sizes.

a retrieval stride length of 16 tokens. The retrieval stages are run
using 32 cores on a server-class Intel Xeon Gold with 2.3GHz fre-
quency. The retrieval encoding model is a modern, commonly used
embedding model, BAAI general embedding (bge-large-en) [46].

In terms of TTFT, Figure 6(left) shows retrieval accounts for
≈61.21% and ≈93.98% of the latency for 10 billion and 100 billion
token-sized datastores, respectively. Scaling the datastore from 10
billion to 100 billion tokens increases the retrieval latency from 5.62s
to 56.1s (11.1×). As we further scale the datastore, we see roughly
linear growth in latency with datastore size. Publicly available data-
stores like MassiveDS implement trillion-token scale datastores;
here, retrieval latencies would continue to grow, taking several
seconds to complete, precluding efficient at-scale deployment. Fig-
ure 6(right) shows the impact of retrieving relevant context from
large datastores on end-to-end RAG-based LLM latency. While the
end-to-end LLM latency is about 12.0s for 100M token datastores,
the latency increases to 101.8s and 909.1s for 100-billion and trillion-
token datastores, found in MassiveDS [41]. The impact of retrieval
on end-to-end latency is due to not only large datastores but also
repeated retrievals as new tokens are generated in the LLM decode
phase.

TAKEAWAY 2: In addition to TTFT and end-to-end latency,
RAG systems with large-scale datastores encounter signif-
icant challenges in terms of throughput, energy efficiency,
and memory capacity demands. Figure 7 illustrates the impact
of scaling retrieval datastore size on throughput (left), energy cost

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

Small Datastore Baseline

Small Datastore With Prefix Caching

Small Datastore With Pipelining

At Scale Datastore Baseline

At Scale Datastore With Prefix Caching

At Scale Datastore With Pipelining

CPU Based Retrieval
GPU Based Inference

CPU Based Retrieval
GPU Based Inference

CPU Based Retrieval
GPU Based Inference

Baseline unoptimized RAG inference Baseline unoptimized RAG inference. Larger Datastores Exacerbate Retrieval Overhead

Prefix Caching Helps Reduce Latency Overhead

Pipelining Inference and Retrieval improves
Inference and Resource utilization

Retrieval overhead remains high despite prefix caching, as retrieval dominates the latency

Inference–Retrieval Pipelining Fails to Fully Mask Retrieval Latency

 Prefill Latency Decode Latency Small Datastore Retrieval Latency Large Datastore Retrieval Latency Encoding Latency

Figure 8: Prior enhancements improvements are not realized as well with larger datastores. Enhancements like prefix caching
and pipelining are less effective with larger datastores due to longer retrieval times, causing GPU underutilization. In smaller
datastores, pipelining overlaps better with retrieval latency, and prefix caching significantly reduces prefill stage latency.
PipeRAG performs best when retrieval and inference latencies are similar, while RAGCache excels with small datastores, where
prefill optimization has the greatest impact.

per retrieval (center), and index storage size (right). This analysis
assumes an IVF index with 8-bit scalar quantization which achieves
a recall of 0.94 (see Table 1). We choose this IVF configuration based
on an hyperparameter sweep considering (1) retrieval algorithm, (2)
product versus scalar quantization, and (3) recall. Throughout and
energy are measured on a server-class Intel Xeon Gold CPU with
32 cores and Intel RAPL [21] to monitor power. As expected, in-
creasing the datastore in terms of tokens has a direct, linear impact
on index storage size; datastore sizes of 1 trillion tokens require
nearly 10 TB of memory capacity using even memory-efficient IVF
index types. Similar to memory capacity, increasing datastore size
directly degrades retrieval throughput and energy efficiency. Fig-
ure 7 left and center show increasing datastore size by 10× has a
nearly commensurate impact on throughput and energy. In fact,
with 100 billion token-scale datastores, a single CPU achieves a
throughput of only 5.69 QPS at the cost of nearly 1124 Joules per
query. In contrast, a single NVIDIA A6000 Ada GPU, with a TDP
comparable to the CPU, delivers a throughput of 132 QPS while
only consuming 2.2 Joules per query during the prefill phase, and 67
QPS with the same energy consumption of 2.2 Joules per retrieval
stride during the decode phase. These results are measured using
the Gemma2-9B model with 512 input tokens and 256 output tokens
with 16 token retrieval strides. These memory capacity, through-
put, and energy efficiency limitations underscore the critical need
for new strategies to efficiently handle trillion-token datastores at
scale.

TAKEAWAY3:While priorworkhas successfully enhanced
the performance of RAG systems for smaller search indices,
it has largely overlooked the immense retrieval overhead
at the trillion-token scale, which significantly constrains
the potential performance improvements these systems can
achieve at scale. Recent research accelerating RAG systems has
introduced two key dimensions of optimization:

• PipeRAG: Pipelining retrieval and LLM inference [16]: Pipelin-
ing allows systems to overlap retrieval on CPU and LLM inference
on GPU, maximizing hardware utilization. Pipelining the stages
relies on hiding the retrieval search with LLM inference of previ-
ously fetched documents; effectively queries use potentially stale
documents when re-retrieving new documents after generating
new tokens, as defined by the stride length.

• RAGCache: Caching prefill computation for documents [17]:
Caching exploits the observation that subsequent retrievals for
new documents may exhibit significant overlap in retrieved doc-
uments. The prefill stage can be shared across these documents,
eliminating duplicated computation by caching key-value (KV)
tensors. In our system, we assume we can achieve an ideal 100%
hit rate in the key-value tensor cache, effectively minimizing the
overhead associated with additional prefills during subsequent
retrieval strides and maximizing the potential performance gains
that can achieved through this work.

Figure 8 illustrates the impact of pipelining and caching on end-
to-end RAG system latency aswe vary the datastore size.While both
pipelining and caching optimize end-to-end RAG system latency;
TTFT latency and the energy cost of retrieval on large datastores
are not optimized. Figure 8(left) shows an example baseline RAG
system, both caching and pipelining provide good performance
improvements. In particular, pipelining almost fully overlaps re-
trieval and LLM inference, saving up to 1.62× end-to-end latency.
However, for large-scale datastores, the opportunity to overlap is
reduced. Figure 8(center) shows retrieval latency dwarfs prefill and
decoding (for a given, fixed stride length), here the performance
benefits of both pipelining and caching are reduced. PipeRAG ad-
justs key retrieval parameters such as nprobe, which defines the
retrieval search depth, and stride length to balance retrieval and
LLM stages; however, in large datastores, sacrificing nprobe and
stride length comes at the cost of output quality and model per-
plexity. Figure 8(right) shows as we increase datastore size to a
modest 100B Tokens, the performance benefit from caching also
monotonically decreases, as retrieval accounts for a larger fraction
of execution time; pipelining provides benefit until retrieval and
LLM stages can be perfectly overlapped; after this, the speedup
diminishes.
4 Hermes Design Overview
In this section, we describe Hermes, an extensible system that co-
designs retrieval algorithms and hardware for efficient RAG at scale.
Hermes is designed to primarily optimize (1) time-to-first-token
(TTFT) latency, (2) end-to-end (E2E) latency, and (3) energy of
end-to-end RAG-based LLMs. Figure 9 illustrates the overall archi-
tecture of Hermes. Central to Hermes is a split-index design that
distributes the typically singular large search index across multiple

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

C
PU

 2

Host CPU

Hermes Scheduler

Query 1

C
PU

 3
C

PU
 1

C
PU

 4
3

Encoder Model
Inference Model

G
PU

Encoder Model
Inference Model

G
PU

Encoder Model
Inference Model

G
PU

Encoder Model
Inference Model

G
PUCPU 1

CPU 2
CPU 3
CPU 4

CPU 2

Cluster Ranking

Document Sampling
E1 E2 E3 E4 E5

Job Queue2

In-Depth Search

C2 C1 C2 C3 C4

4 Job Queue

Document Chunks

5

IV
F

In
de

x
1

IV
F

In
de

x
2

IV
F

In
de

x
3

IV
F

In
de

x
4

Hermes Pipeline:

2 3 4

5GPU
CPU

Baseline Pipeline:

1 1 5

2 3 4 2 3 4

1 5

GPU
CPU

1

Monolithic Retrieval
5

1
2
3
4
5

Sample distributed IVF indices with encoded query
Rank IVF indices based on sample data
Search best IVF indices in depth for top k docs

Augment retrieved docs with query for inference

Encode Query

La
rg

e
Tr

ill
io

n
To

ke
n

D
at

as
to

re

Si
m

ila
rit

y
C

lu
st

er
in

g

Sp
lit

 In
de

x
Sp

lit
 In

de
x

Offline Index Construction Online Inference

Figure 9: Hermes introduces three key enhancements to RAG pipelines: (1) partitioning datastores into separate IVF indices to
enable more efficient parallel retrieval, and (2) implementing hierarchical searching through document sampling to navigate
the distributed search space more effectively. Together, these innovations significantly reduce retrieval latency and energy
consumption compared to traditional RAG pipelines that rely on a single, monolithic search index for the entire datastore.

Table 2: Hermes framework configurable parameters.

Configuration Aspect Tuning Options

Latency & Accuracy Sample Search Depth
Deep Search Depth
Number of Clusters to Search
Number of Documents to Retrieve

Node Scaling Number of Search Indices

Memory Efficiency Size of Search Indices

nodes. Distributing the large non-parametric datastore across nodes
and performing context retrieval in parallel on the smaller clusters
directly reduces latency. However, naively splitting the datastores
and concurrently searching all clusters is wasteful, levying high
energy costs and limiting overall retrieval throughput. To address
these challenges, Hermes begins by distributing indices into clusters
based on their similarity (Section 4.1). It then employs a hierarchical
search algorithm that first samples each cluster. Based on the sam-
pling results, the algorithm identifies the clusters with the highest
probability of producing relevant context and focuses on these for
a more in-depth search. Despite reducing the number of in-depth
searches, Hermes achieves equivalent retrieval quality, measured
as NDCG (defined in Section 5) (Section 4.2). Hermes tunes the
number of clusters created and searched, the partitioning of indices
in clusters, and the trade-off between sampling and in-depth search
to co-optimize end-to-end RAG LLM latency and energy, as well as
retrieval throughput. Hermes’s flexible design allows it to be easily
adapted for various RAG deployment scenarios. Table 2 lists the
tunable parameters that enable these customizations.

4.1 Distributed Retrieval Indices
As shown in Section 3, IVF search latency scales with the size of the
datastore; IVF search through smaller indices exhibits significantly
lower latency while improving energy efficiency and throughput.

Hermes exploits this scaling trend to split monolithic datastores
into smaller search indices that can be concurrently searched.

Unfortunately, naively dividing datastores into sub-clusters re-
sults in energy costs that are greater compared to that of searching
a baseline monolithic index, as all clusters must still be searched to
maintain accuracy comparable to searching the monolithic datas-
tore. Hermes splits the search indices so that similar documents end
up within the same cluster. This allows Hermes to only search a
select number of “relevant” clusters to achieve equivalent accuracy
as the monolithic search index. In order to find document similarity,
we apply K-means clustering to the dataset to create a set of unique
document clusters and then construct a separate IVF index for each
resulting cluster (as illustrated Figure 10 (left)).

A key parameter in Hermes’ index splitting procedure is deter-
mining the number of clusters to split the datastore into. To guide
the number of clusters to split the non-parameteric datastore into,
we rely on the fact that retrieval latency can be overlapped with
subsequent LLM prompt computation and token generation phases,
as shown by prior work (see Figure 8) [16]. Figure 10(right) shows
the retrieval latency as we vary datastore size in comparison to
latency of an NVIDIA A6000 Ada GPU performance inference using
a Gemma 2-9B model. As an example, we find splitting an example
100B token datastore into 10 10B token clusters sufficiently hides
the retrieval latency for our system.

However, not all clusters are equally sized. Due to the inherent
randomness in the K-means initial centroid choice and despite the
iterative improvement of these centroids during K-means training,
some clusters still comprise more documents than others which
leads to an imbalance in search latency across queries and clusters
searched within a query. It is thus desirable to minimize (if not
eliminate) the imbalance in the cluster sizes. The imbalance can
be calculated in multiple ways (e.g. variance or entropy of the
cluster sizes). We simply choose the ratio of the largest to the
smallest cluster size as a proxy for imbalance. Seeding K-means
with different initial random centroids leads to varying imbalances

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

Step 1: Dataset Disaggregation

Datastore Cluster Data Clustered Indices

Figure 10: Clustering related data to each other allows us
to create multiple smaller indices that can be searched in
parallel. In this figure, we simplify the datastore clustering
situation with each square representing a document of the
dataset and color signifying similar documents.

in the resulting final clusters after training. We propose to quickly
iterate across different seeds in multiple K-means runs to choose
the lowest empirical imbalance for a given dataset. Given the size of
the datastores, multiple K-means runs can be very costly. Hermes
mitigates this cost by observing the imbalance on a small subset
of documents. On an example 100M datastore, clustering based on
even 1-2% tracks the clustering scheme very well for the larger
datastore. This reduces the cost of a K-means run down to a few
seconds for each seed during the offline index construction phase.
On the example 100M datastore, we obtain the seed that minimizes
imbalance the best (i.e. the gap between the largest to the smallest
cluster, of 2×). We further address the inefficiency associated with
accessing these uneven-sized clusters in Section 4.2.

4.2 Hierarchical Search via Document Sampling
Hermes’ document clustering scheme reduces the search space for
documents by allowing queries to focus on a subset of clusters while
preserving accuracy. Since not all clusters will be equally relevant
to a given query, Hermes saves energy and improves throughput
by searching index clusters where the highest concentration of
relevant data is likely to be located for a given query. Building on
this insight, we propose a hierarchical search strategy that samples
clusters to find the best indices for in-depth searches, enabling a
more efficient retrieval without compromising retrieval quality.

Figure 11(left) shows the multi-step hierarchical search process
implemented by Hermes. First, the encoded query embedding is
used to perform document sampling, a coarse-grained search into
all clusters based on the K-means clustering partitioning. A single
document is retrieved from each of the clusters. Using the sampled
documents, we rank the clusters for relevance based on the doc-
ument’s similarity to the original query. Using the most relevant
clusters determined from our sampling, we conduct an in-depth
search into those clusters for a larger set of retrieved documents.
The final set of retrieved documents is then ranked to get the top 𝑘
documents that are utilized for inference in the RAG pipeline. Cen-
tral to Hermes’ hierarchical search is using IVF’s nProbe run-time
parameter that defines the search effort; queries with larger nProbe
values take longer to process but yield more relevant documents.

Intuitively, for the initial sampling, we use a low nProbe to
rapidly sample a single document from each cluster. Instead of
relying solely on centroid values, we retrieve documents directly
from the clusters based on their relevance to the query. This method
enhances retrieval accuracy by ensuring that documents are more

Step 2: Hierarchical Search

Clustered
IVF Indices

Index Sampling
& Ranking In Depth

Search

Document
Reranking

1
2
3
4

1
2
3
4
5
6

Q
ue

ry

Figure 11: Hermes’ hierarchical search begins with a doc-
ument sampling step with a low nProbe value across all
constructed indices. Based on the similarity scores of the
retrieved documents, the top-performing indices are selected
for a more detailed in-depth search. In this phase, multiple
documents are retrieved from the selected indices. The re-
trieved documents are reranked, with the top-ranked ones
used for inference.

closely aligned with the query and are not based on generaliza-
tions of all of the documents in the cluster, improving our ability
to identify which clusters contain the most pertinent information.

The right portion of Figure 11 shows the accuracy implications
of the centroid based searching method. We sweep the number of
clusters in which an in-depth search is conducted and the impact
on document quality as measured by NDCG. We compare Hermes
to the split search (naively splitting the datastore into equal sizes
search indices), to search that leverages the cluster centroids only,
and a monolithic search, on a 100M datastore from a subset of
the Common Crawl dataset [36]. We find that Hermes reaches iso-
accuracy by searching only a small number of clusters in depth,
whereas naive splitting requires searching nearly 10 clusters to
achieve comparable accuracy. The figure also demonstrates the
advantage of document sampling which gives better accuracy than
the centroid-only search for a given number of in-depth clusters
searched. We posit that searching 3 clusters in-depth in Hermes
is a good design point that balances the in-depth search cost and
accuracy.

Design Space Exploration:We also do a design space explo-
ration case study (as seen in Figure 12) to determine what nProbe
value to use for our sampling search and in-depth search, to opti-
mize accuracy and latency in our setup. On the left, we vary the
nProbe parameter for sampling and the number of clusters searched
in the subsequent in-depth search (while using a fixed high nProbe
for the in-depth search). As we increase the nProbe parameter we
observe improving NDCG at the expense of latency. On the right,
we assume a fixed nProbe of 8 for sampling, and vary the nProbe
parameter for the in-depth search. Similarly, we find larger nProbe
values yield higher NDCG at the expense of latency, however the
latency overhead is more pronounced than the overhead seen for
smaller search values. Through this analysis, we identify an optimal
configuration with a small nProbe value of 8 and a large nProbe
value of 128, which maximizes the end-to-end accuracy while not
significantly impacting the latency.

Load Balancing Optimization: By intelligently splitting the
data and searching only a subset of the nodes, Hermes improves
throughput and energy efficiency. We further optimize Hermes’
energy efficiency by leveraging Dynamic Voltage and Frequency
Scaling (DVFS). As shown in Figure 13, when distributed search

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

2 4 6 8 10
Clusters Searched

0.6

0.7

0.8

0.9

N
D

CG

2 4 6 8 10
Clusters Searched

0.002

0.003

0.004

0.005

0.006

La
te

nc
y

(s
)

2 4 6 8 10
Clusters Searched

0.6

0.7

0.8

0.9

N
D

CG

2 4 6 8 10
Clusters Searched

0.02

0.04

0.06

La
te

nc
y

(s
)

Small nProbe Values
1 2 4 8

Large nProbe Values
16 32 64 128

Figure 12: Design space exploration for small and large nProbe sweeps. In small nProbe sweeps, we vary the nProbe values
during the fast search phase before transitioning to a fixed large nProbe of 128. In large nProbe sweeps, we hold the small
nProbe at 8 and vary the large nProbe values. This analysis identifies an optimal configuration with a small nProbe of 8 and a
large nProbe of 128, achieving a balance between efficient latency and reasonable accuracy.

0 1 2 3 4 5 6 7 8 9
Cluster ID

0.0

0.5

1.0

1.5

Si
ze

 (
D

oc
s)

1e7

0 1 2 3 4 5 6 7 8 9
Cluster ID

0

20000

40000

60000

Ac
ce

ss
 F

re
qu

en
cy

Figure 13: Cluster size and access frequency imbalance. Fre-
quency analysis done analyzing queries from the Natural
Questions Dataset [22].

indices are created using K-means clustering, the resulting clusters
exhibit substantial variation in size. Some of the largest clusters
are nearly twice as large as the smallest ones. Additionally, the
frequency with which these clusters are accessed varies as well,
with certain clusters being accessed more than twice as often as
others. This imbalance leads to an uneven distribution of time
spent searching through different clusters. Some clusters sit idle
while waiting for a batch of queries to finish in the more intensely
searched clusters. Intuitively, some clusters can be slowed down
to save energy while incurring no latency or throughput cost on
the system. Thus, instead of using the maximum CPU frequency to
process all clusters uniformly, we propose to use DVFS dynamically
at a query batch level, and to lower the frequency of the nodes that
are allocated a lighter load for the in-depth search. This approach
allows us to further reduce the energy consumption of Hermes by
10.1–14.5% as we vary the number of clusters searched in-depth.

5 Experimental Setup
We design a representative RAG-based LLM pipeline to evaluate
performance trade-offs, leveraging state-of-the-art open-source
models and retrieval indices.

Datasets and models. We use a BGE Large encoder model
to encode queries at run-time [46]. For inference, we use several
open-source models, including: Phi 1.5 1.3B [27], GEMMA 2 9B [43],
and OPT 30B [47]. Our baseline assumes an input sequence length
of 512 tokens and a generated output of 256 tokens, based on an
average short length of queries and responses as seen in production
systems [35]. We set our retrieval stride length to 16 tokens. Given

our models and hardware systems, we set a default batch size of
128 for all stages.

Retrieval Indices. For our retrieval indices that contain less
than 10B tokens we use a subset of Common Crawl [36]. We gener-
ate a synthetic set of embeddings for our retrieval indices, contain-
ing more than 10B tokens up to 100B tokens. To study the impact
of Hermes’ hierarchical search on recall, we construct indices from
the 10B token subset of Common Crawl, ranging from 5GB to 11GB
each and totaling 73GB in memory. Additionally, we construct syn-
thetic indices up to 100B tokens that total up to 580GB of memory.
End-to-end performance, power, and energy are evaluated using a
combination of indices built using the 10B token Common Crawl
dataset as well as synthetically created datasets.

For retriever performance and accuracy analysis, we leverage
queries from the TriviaQA-test dataset [18] and Natural Questions
dataset [22]. We leverage Normalized Discount Cumulative Gain
(NDCG), with documents from an exhaustive brute-force search as
our ground truth, to evaluate the accuracy of our designs. NDCG
quantifies the quality of ranked results by comparing the relevance
of retrieved items to the ideal ranking of the ground truth. It ac-
counts for both the order of the results and their relevance.

During retrieval, we retrieve the 5 nearest document chunks.
After each retrieval, we prepend the nearest chunk from the 5
(obtained via re-ranking using inner-product distance with the
query vector) to the input query to form the prompt for generation.

Hardware/Software. For retriever experiments, we use 32 cores
of an Intel(R) Xeon(R) Gold 6448Y, and the FAISS [6] library for
ANN search. For Transformers, we leverage an NVIDIA A6000 Ada
GPU, using the HuggingFace [45] library with vLLM [23], under
FP16 precision. We use the Intel RAPL interface to measure power
[21] for CPU-based retrieval and pynvml (nvidia-smi) to measure
the power of our GPU based inference.

Multi-Node Analysis. To evaluate Hermes’ design optimiza-
tion on larger datastores across many nodes, we created a tool
that leverages real hardware measurements on commodity hard-
ware platforms and aggregates the measured numbers to estimate
multi-node behavior. Figure 15 shows how the latency, power, and
energy of individual index clusters and inference stages are mea-
sured on real Intel and ARM server-class CPUs and NVIDIA GPUs.
We measure latency, power, and energy across different batch sizes,

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

0.00

0.25

0.50

0.75

1.00

N
or

m
. E

2E
 L

at
en

cy

Batch Size (Queries)

0.00

0.25

0.50

0.75

1.00
Datastore Size (Tokens)

0.00

0.25

0.50

0.75

1.00
Stride Length (Tokens)

16 32 64 128
0.00

0.25

0.50

0.75

1.00

N
or

m
. E

2E
 E

ne
rg

y

1B 10B 100B 1T
0.00

0.25

0.50

0.75

1.00

32 16 8 4
0.00

0.25

0.50

0.75

1.00

Baseline RAGCache PipeRAG Hermes Hermes/PipeRAG/RAGCache

Figure 14: Comparison of Hermes with other prior acceleration techniques for at-scale retrieval indices. We find Hermes, under
a wide variety of retrieval serving systems, can achieve improvements in latency and energy savings relative to the monolithic
baseline. We use an IVF SQ8 index for our retriever paired with Gemini-2 9B models and BGE-Large for our inference and
encoder models. For consistency, we standardize our batch size at 128 with a datastore size of 10 billion tokens and a stride
length of 16 unless directly specified otherwise in the plot.

Load GeneratorTr
iv

ia
Q

A
D

at
as

et

Sample Search

Query Trace

C
PU

G
PU

On Device Measurements

Split Retrieval Indices
Index 0 Index 1 Index 2 Index 3

DecodeEncoder Prefill
Batch Size Batch Size

Batch Size Frequency

Multi Node Aggregation

Latency

Po
w

er

Batch Size

Latency

Po
w

er

Batch Size

Latency

Po
w

er

Frequency

Si
ng

le
 N

od
e

M
et

ric
s Node 0

Node 1

Node 2

Node 3

Node 9

Node 4

Latency

Energy

Throughput

Batch Size

Figure 15: Our multi-node analysis tool collects measure-
ments across the hardware platforms and uses that data to
model end-to-end latency, energy, and throughput.

retrieval strides, and sequence lengths, constructing a comprehen-
sive lookup table. Pairing these per-node on-device measurements
with a trace of the top clusters accessed during the deep search
based on TriviaQA [18], we aggregate the measurements to model
the end-to-end latency, power, and energy of a Hermes-based RAG
system.

6 Evaluation
To evaluate the performance of Hermes, we conducted a comprehen-
sive evaluation of an end-to-end RAG pipeline (as seen in Figure 14.
This pipeline leverages BGE Large as the encoder and Gemini 9B
as the LLM. Throughout our study, we use IVF indices with 8-
bit scalar quantization (SQ8, instead of FP32), configured with an
nProbe value of 128 and nlist set to

√
𝑛 where n is the total num-

ber of documents in our datastore, to ensure optimal accuracy
and performance balance. For our in-depth search in Hermes, we
identify 3 clusters as an ideal number of clusters for balancing per-
formance with retrieval accuracy. We use a 512-token sequence as
the length of our enhanced input that is passed into the LLM and
generate 256 tokens of output with a retrieval stride length of 16
tokens. We compare Hermes against a baseline (unoptimized) RAG
pipeline, PipeRAG [16], and RAGCache [17]. Our results demon-
strate that while Hermes can deliver impressive performance as a

standalone solution, we can further optimize performance when
integrating Hermes with existing approaches like RAGCache [17]
and PipeRAG [16], achieving added levels of efficiency and effec-
tiveness. Due to the vastly different orders of magnitude of data
we see from scaling some of the comparison metrics, we normalize
the latency and energy values so that we may better illustrate the
speed-ups across methods.

TAKEAWAY 1: Hermes allows us to achieve significant
latency speedups and energy improvements through a di-
verse set of retrieval serving configurations, excelling in
more computationally demanding environments. Figure 14
shows the impact Hermes has on the performance of RAG systems
under various retrieval-oriented serving constraints. We explore
the enhancements Hermes can achieve under different batch sizes
(Figure 14(left)), different datastore sizes (Figure 14(center)), and
varying stride lengths (Figure 14(right)). Through these metrics,
we aim to show that under different retrieval serving configura-
tions (retrieval load, length, and frequency), Hermes is still capable
of showing latency improvements ranging from 2.45× – 10.25×
and energy improvements ranging from 1.08× – 3.37×. To accu-
rately model the latency and energy trends in Hermes, we use our
multi-node analysis tool (as described in Section 5).

In Hermes, as well as the baseline, different batch sizes in the
retriever stage are handled by FAISS, which schedules one thread
per query and greedily processes the queries in a batch i.e. work
stealing. Higher batch sizes allow better overlap of queries with
each other, and fewer idle cores as a batch is completed. For all the
batch sizes in our study, we obtain significant speed-ups relative to
the baseline. We get on average 6.91× latency improvements by dis-
tributing a monolithic index over 10 machines in our experiments.

Distributed searching, while faster, can potentially lead to higher
energy consumption than searching on a single machine over a
monolithic index. However, since Hermes searches a subset of ma-
chines per query, we achieve overall better energy efficiency than

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

1B 10B 100B 1T
Datastore Size (Tokens)

0.00

0.25

0.50

0.75

1.00

N
or

m
. T

TF
T

La
te

nc
y Baseline Hermes Hermes/PipeRAG/RAGCache

Figure 16: Hermes addresses the prohibitively expensive
TTFT Latency with a 9.1× improvement in latency for tril-
lion token datastores, an improvement that has not been
addressed by prior works

naively searching all clustered indices in parallel, across all batch
sizes. This underscores why Hermes is better than a naively dis-
tributed index that searches all machines; Hermes reduces latency
as well as energy consumed by queries.

Examining trillion token datastores, Hermes achieves a 9.33×
speed-up to latency while using 2.10× less energy. The most signif-
icant performance gains come from Hermes’ distributed splitting
strategy, especially for larger datastores. Since datastore search in-
dex times scale linearly with size, while datastore growth has been
exponential, scaling down the search space results in multiplicative
performance benefits. Although Hermes offers latency and energy
efficiency improvements for smaller systems (e.g., 1 billion-token
datastores), these gains are less pronounced because, in such cases,
the critical performance bottleneck shifts to the GPU rather than
the retrieval stage, limiting the overall impact of our enhancements.

We observe a similar trend in increasing the frequency of re-
trieval stride as with datastore size. Because Hermes excels in reduc-
ing the retrieval overhead through the distributed index searching
strategy, increasing the frequency of retrieval cascades the enhance-
ments from retrieval throughout every stride of the generation
process. This gives us cumulative improvements in performance
(reaching up to 10.12× improvements in latency at a stride length of
4 tokens). A similar trend holds true for energy, where at a retrieval
stride length of 4 tokens, we see a 2.37× saving in energy.

TAKEAWAY 2: Hermes addresses the high latency costs
associated with TTFT generation. In production environments,
minimizing TTFT is crucial for delivering a positive user experi-
ence. Variations and imbalances in the TTFT can adversely affect
the quality of service that production systems strive to maintain.
Previous approaches like PipeRAG [16] and RAGCache [17] have
primarily addressed inefficiencies in RAG from an inference stand-
point. While these methods offer performance enhancements, they
are limited by their reliance on information generated in prior
inference strides, which constrains their ability to reduce TTFT. Ad-
ditionally, as discussed in Section 3, a substantial portion of TTFT
latency originates from the retrieval process itself and not from
inference. By focusing on optimizing the retrieval process itself,
Hermes achieves performance improvements within the retrieval
stage that allow it to achieve 9.1× improvements in latency during
TTFT at the trillion token scale.

TAKEAWAY 3: The adaptability of the Hermes Framework
allows seamless integration across diverse inference model
architectures and hardware. Hermes demonstrates significant
performance improvements even when applied to models with

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

Model Architecture

0.0

0.2

0.4

0.6

0.8

1.0
Hardware Platform

Phi1.5(1.3B) Gemma2(9B) OPT(30B)
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

A6000 L4
0.0

0.2

0.4

0.6

0.8

1.0

Baseline Hermes Hermes/PipeRAG/RAGCache

Figure 17: Hermes performance comparison under different
inference serving configurations. Unless stated otherwise, all
tests use the Gemma 2 model running on an A6000 Ada GPU.
However, the OPT model requires two A6000 Ada GPUs to
fit within the available memory, while the Gemma 2 model
requires 2 L4 GPUs due to its memory requirements.

varying sizes, architectures, and inference times. Changes in the
inference model, such as increased size or complexity, can impact la-
tency and the efficiency of optimizations like pipelining, which ben-
efit from the reduced retrieval times that Hermes offers. However,
despite these changes in inference model size, Hermes continues
to provide performance improvements of up to 3.92× with energy
savings of 1.87× with larger models such as OPT (as illustrated
in Figure 17). Hermes’ flexible index splitting strategy allows the
framework to easily be fine-tuned and its indices strategically split
in different ways (larger or smaller distributed splits) to optimize
performance for specific LLMs. This adaptability ensures that Her-
mes can be tailored to meet the unique requirements of different
models and serving environments to best optimize RAG pipelines.

Since RAG systems at scale are predominantly bottlenecked by
retrieval times and Hermes’ focus is on optimizing retrieval, it
consistently delivers performance improvements across diverse
inference serving systems. However, as inference model latencies
grow significantly, the performance benefits provided by Hermes
become less pronounced. We can see how performance changes
from 9.38× speedup with the smaller Phi 1.5 model (1.3 billion
parameters) to only 3.92× speedup with the OPT model (30 billion
parameters) while simultaneously requiring more energy (going
from a 2.20× energy savings to only 1.87× energy savings)

Moreover, Hermes maintains its performance advantages across
different LLM serving hardware platforms such as inference class L4
GPUs with a lower TDP compared to A6000 Ada’s. This adaptability
underscores the versatility of Hermes as a scalable solution suitable
for a wide range of computational settings.

In our experiments shown in Figure 17, tests with the OPT model
and L4 GPUs require two GPUs. The OPT model is too large to
fit on a single GPU, and the L4 GPUs lack sufficient memory to
support a Gemma 9B model on one GPU.

When considering the resource scaling for retrieval and infer-
ence, it is important to account for both the batch size and the
model size being used. Depending on these configurations, adding

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

250

500

750

1000

Th
ro

ug
hp

ut
 (

Q
PS

)

1 2 3 4 5 6 7 8 9 10
Number of Clusters Searched

400

600

800

1000

En
er

gy
 (

Jo
ul

es
)

Hermes Clusters Searched

Figure 18: Hermes greatly improves the retrieval through-
put and energy efficiency relative to a naively distributed
retrieval scheme. Searching 3 clusters allows us to have 1.81×
higher throughput and 1.77× energy savings compared to
searching through all 10 clusters.

more resources can lead to higher energy consumption without
proportional performance gains. In our setup, retrieval operates
in batches of 128, while inference models leverage tensor paral-
lelism across multiple GPUs as needed to accommodate the model
in memory.

Our findings reveal that increasing the number of CPU cores
beyond the batch size provides minimal performance gains with-
out significantly impacting energy efficiency. However, for GPUs,
adding additional devices (particularly with smaller models like
Gemma2 9B) yields diminishing returns in performance. Tensor
parallelism with smaller models results in substantial increases in
energy usage while performance improvements remain minimal.
This likely points to why even with L4 GPUs we are only able to
achieve a 2.11× saving in energy compared to the 3.84× savings
achievable with the A6000 ADA GPUs despite the fact L4 GPUs
require much less power to operate. The communication overhead
from distributing the model across GPUs, combined with the fact
that A6000 Ada GPUs offer higher peak performance within a lower
power budget compared to L4 GPUs (91 TFLOPS at 300 watts vs.
31 TFLOPS at 140 watts), explains why inference-scale L4s achieve
less energy savings compared to general-purpose A6000 Adas.

This pattern is observable as well with larger models that require
tensor parallelism across multiple GPUs to function. Depending
on the inference model, latency performance benefits of adding
multiple GPUs to inference setups can come at the cost of high trade-
offs between energy consumption and performance scalability.

TAKEAWAY 4: Hermes improves the retrieval through-
put and energy efficiency relative to a naively distributed
retrieval scheme. Compared to a distributed retrieval system that
unintelligently splits the datastore into 𝑁 nodes and has to search
and aggregate results from all machines for each query, Hermes
intelligently splits the data so it is only required to search a subset
of the nodes to reach the same accuracy. Hence, the reduced com-
putation leads to significant throughput and energy improvements.
We use our multi-node analysis tool to model Hermes and the naive
split search. Figure 18 shows the system throughput and energy con-
sumed per cluster searchedwith Hermes. The batch size evaluated is

(32,4)(256,32)
Context Length

8

16

32

64

128

256

Ba
tc

h
Si

ze

3B
0.10s

30B
0.79s

3B
0.12s

33B
0.86s

4B
0.15s

40B
1.03s

6B
0.22s

55B
1.37s

11B
0.37s

83B
2.01s

25B
0.69s

222B
4.10s

32 256 2048
Input Length

4

32

256O
ut

pu
t

Le
ng

th

4B
0.15s

10B
0.34s

44B
1.11s

34B
0.88s

49B
1.24s

114B
2.59s

434B
7.06s

563B
8.85s

993B
14.84s

1B 10B 100B 1T
Cluster Size (Tokens)

Figure 19: Analysis of how the optimal Hermes cluster size
should be determined for effectively overlapping retrieval
latency across various inference serving scenarios. In the left
plot (32, 4) and (256, 32) indicate how many input and output
tokens made up the context length respectively.

128, over queries from the Natural Questions Dataset [22].While the
throughput of the naively distributed system is 290 queries/second
(QPS), Hermes can improve this by 1.81× to reach comparable accu-
racy, by reducing the number of clusters searched to 3 (see Figure
11). Similarly, the energy consumed per batch is reduced to 1.77×
that of using all 10 clusters. These benefits demonstrate the key
advantages of Hermes over a naively distributed system, namely,
throughput enhancements and improved energy efficiency.

TAKEAWAY 5: Hermes’ design parameters enable it to
be configured to effectively scale to a wide range of deploy-
ment scenarios, hiding retrieval latency under inference and
matching retrieval and inference throughput.Hermes provides
a broad range of tunable hyperparameters that can be optimized
for various serving scenarios (see Table 2). These parameters en-
able Hermes to dynamically adapt to different RAG applications,
handling diverse software and hardware deployment scenarios.

Inference. RAG-based LLMs can be used in various applications
such as conversation-based tasks and coding-based tasks [42]. Re-
cent work [35] shows that coding-based tasks require significantly
fewer output tokens (with most containing less than 250 tokens)
while conversation-based tasks, on average, generate greater than
250 tokens. These runtime parameters directly impact TTFT latency
and end-to-end inference latency. To optimize across these diverse
inference application scenarios, Hermes is designed to be adaptable
to different use cases. Figure 19 shows inference latency across
input and output sequence lengths, which can represent different
tasks. Across these scenarios, Figure 19 shows how Hermes can be
configured in terms of cluster sizes to effectively overlap retrieval
latency with subsequent inference stages. For example, with a fixed
output sequence of 32 tokens, as input sequence length increases
from 32 to 2048 tokens, cluster sizes can increase from 34B to 114B,
reducing the number of parallel clusters and retrieval nodes needed.

Hardware Architecture Because retrieval can be run on a di-
verse set of hardware platforms, Hermes provides many systems
hyperparameters that can be adjusted for additional throughput

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

2 4 6 8 10
Clusters Searched

0.5

1.0

1.5

Ti
m

e
pe

r
Ba

tc
h

(s
)

Inference Latency

2 4 6 8 10
Clusters Searched

0

100

200

300

400

Th
ro

ug
hp

ut
 (

Q
PS

)

Inference Throughput

Neoverse-N1 (BS=32) Neoverse-N1 (BS=128) Gold 6448Y Platinum 8380 Silver 4316

Figure 20: Different generations and architectures of proces-
sors impact retrieval latency compared to inference latency.
By optimizing batch sizes, we can equalize throughput across
various hardware platforms.

gains and energy savings based on the characteristics of an un-
derlying platform. Figure 20 shows how different generations of
CPU hardware with different microarchitectures can impact the
latency and throughput of our Hermes search compared to infer-
ence, with the latest Intel generation (Platinum 8380) achieving
the best throughputs (249 – 379 QPS) and latencies (0.084 – 0.13s).
Although the ARM processor yields lower throughput and less
favorable latency scaling, its higher core count allows us to run
Hermes searches at a larger batch size to achieve comparably high
levels of throughput (when only a few clusters are searched).

Additionally, as the Hermes search on Intel CPUs outperforms
inference in both throughput and latency, we can deliberately slow
it down to enable more aggressive DVFS. Because our inference
and retrieval latencies are pipelined, a faster retrieval does not offer
an added benefit, and slowing searches does not hurt performance.
Figure 21 shows that by allowing the latency of individual searches
to match the inference latency, instead of limiting DVFS based on
the cluster that takes the longest to search through, the energy
efficiency of DVFS further improves energy, ranging from an addi-
tional 18.8 to 22.1% savings compared to the 10.1 - 14.5% savings
achieved when slowing down the frequency to the latency of only
the slowest cluster. We see energy savings of 19.6% searching 3
clusters with this enhanced form of DVFS (the configuration used
in our evaluation).

7 Related Work
RAG Acceleration: System-level techniques have been proposed
to improve RAG performance, via pipelining RAG stages [16],
caching document states [17], and speculative retrieval [49]. How-
ever, these techniques lose their efficacy as the datastore is scaled to
very large sizes, a scenario where Hermes shines. While promising
research on custom accelerators for RAG exists [11, 14, 15, 37, 38],
we chose to focus on optimizations that can target currently de-
ployable production systems at scale. Although advancements in
accelerator technologies, such as near-memory processing pro-
posed in [15], have demonstrated substantial performance gains
for RAG, large-scale deployment of these solutions in datacenters
is not yet a practical solution for high-volume serving.

Scaling Retrieval: Strategies have been proposed to scale the
retrieval stage to larger datastores. Distributed retrieval indices
that use horizontal scaling for larger datastores exist in commer-
cial vector databases [7, 44] as well as literature [36, 48]. In naive
distributed systems, the datastore is sharded, and a query search is

1 2 3 4 5 6 7 8 9 10
Clusters Searched

0.70
0.75
0.80
0.85
0.90
0.95
1.00

N
or

m
. E

ne
rg

y

Hermes Hermes DVFS Hermes DVFS Enhanced

Figure 21: By slowing down the latency of Hermes retrieval
to match the latency of inference, we can achieve additional
energy savings. We see an average energy savings of 12.24%
with baseline DVFS and 20.44% with the enhanced DVFS.

broadcast to all nodes, and the results are aggregated. Such systems
do reduce the latency and memory per machine, but cannot achieve
throughput as high as Hermes, which does a subset of distributed
nodes for in-depth search. Furthermore, to tackle the large mem-
ory footprint, reducing the precision (i.e. quantization of vectors
[13]) has been proposed – however, this leads to a loss in accu-
racy. Moreover, DRAM/Disk hybrid indexes (i.e. storing partial or
reduced-precision vectors in memory and full-precision on fast SSD
disks) have been proposed in [5, 12], but this leads to only memory
reduction, not latency. Hermes delivers improvement in memory
footprint, latency, and throughput while maintaining accuracy.

Hierarchical K-means: Prior works explore hierarchical K-
means trees for efficient searching [8, 32, 33]. Hermes differs from
these works in that it distributes nodes and uses document sampling
instead of just comparing top-level cluster centroids.

ANN Search & Databases: Recent studies in approximate near-
est neighbor search include ANN Benchmarks [2] and Locality Sen-
sitive Hashing (LSH) [9], which focus on efficient, high-dimensional
querying. Unlike conventional hierarchical search methods found
in database literature [10, 26], Hermes employs a flexible and dy-
namic approach tailored for RAG applications, offering a more
scalable, efficient, and accurate solution than static hierarchical
search frameworks.

IVF Optimizations: Within IVF, prior works [25, 48] use in-
put/intermediate results to learn to predict search extent and termi-
nate search early. SPANN [5] does query-time pruning of clusters
based on the distance with the best centroid. These proposals do
improve latency & throughput, but need to be used in conjunction
with our distributed system to really scale to large datasets.

8 Conclusion
In this paper, we introduce Hermes, an algorithm-system co-design
framework designed to address the challenges of scaling infor-
mation retrieval in large-scale trillion-token datastores for RAG
systems. By distributing retrieval search indices across multiple
CPUs and employing a hierarchical search strategy that intelligently
targets specific, organized search clusters, Hermes significantly en-
hances performance and energy efficiency in large-scale RAG sys-
tems without compromising accuracy. Our evaluation demonstrates
that Hermes achieves up to a 9.33× speedup and 2.10× energy sav-
ings for trillion token datastores when integrated with previous
state-of-the-art RAG acceleration methods [16, 17]. Furthermore,
Hermes delivers up to 9.29× improvements in throughput compared

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

to more naive searching strategies, showcasing its potential to sim-
ply but effectively enhance the efficiency of large-scale retrieval
systems for RAG.

Acknowledgments
We thank the anonymous reviewers and the artifact evaluation
committee for their time and insightful feedback, which helped
improve this work. This research was supported by the National
Science Foundation Graduate Research Fellowship under Grant
No. DGE-2139899, as well as by NSF Awards No. 2118709 and CFF-
2326608. Computational resources were generously provided by
Chameleon Cloud [20] and Google.

References
[1] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2023.

Self-rag: Learning to retrieve, generate, and critique through self-reflection. arXiv
preprint arXiv:2310.11511 (2023).

[2] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374.

[3] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. ICML (2022).

[4] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[5] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale
approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[6] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The FAISS library. arXiv preprint 2401.08281 (2024).

[7] Elastic. [n. d.]. Elasticsearch. https://www.elastic.co/elasticsearch/vector-
database.

[8] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning. PMLR, 3887–3896.

[9] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (Dallas, Texas, USA) (STOC ’98). Association
for Computing Machinery, New York, NY, USA, 604–613. https://doi.org/10.
1145/276698.276876

[10] Panagiotis G Ipeirotis and Luis Gravano. 2002. Distributed search over the hidden
web: Hierarchical database sampling and selection. In VLDB’02: Proceedings of
the 28th International Conference on Very Large Databases. Elsevier, 394–405.

[11] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. {CXL-ANNS}:{Software-Hardware} collaborative
memory disaggregation and computation for {Billion-Scale} approximate nearest
neighbor search. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).
585–600.

[12] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information Pro-
cessing Systems 32 (2019).

[13] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[14] Wenqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht, Zhenhao He, Runbin
Shi, Cedric Renggli, Shuai Zhang, Theodoros Rekatsinas, Torsten Hoefler, et al.
2023. Co-design hardware and algorithm for vector search. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15.

[15] Wenqi Jiang, Marco Zeller, Roger Waleffe, Torsten Hoefler, and Gustavo Alonso.
2023. Chameleon: a heterogeneous and disaggregated accelerator system for
retrieval-augmented language models. arXiv preprint arXiv:2310.09949 (2023).

[16] Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
2024. Piperag: Fast retrieval-augmented generation via algorithm-system co-
design. arXiv preprint arXiv:2403.05676 (2024).

[17] Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin
Jin. 2024. RAGCache: Efficient Knowledge Caching for Retrieval-Augmented
Generation. arXiv preprint arXiv:2404.12457 (2024).

[18] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. 2017. TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehen-
sion. ACL (2017).

[19] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[20] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association.

[21] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and
Zhonghong Ou. 2018. Rapl in action: Experiences in using rapl for powermeasure-
ments. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS) 3, 2 (2018), 1–26.

[22] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob
Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: a
Benchmark for Question Answering Research. Transactions of the Association of
Computational Linguistics (2019).

[23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAttention.
In SOSP.

[24] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
NeurIPS (2020).

[25] Conglong Li, Minjia Zhang, David G Andersen, and Yuxiong He. 2020. Improving
approximate nearest neighbor search through learned adaptive early termination.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2539–2554.

[26] Chung-Sheng Li, Philip S. Yu, and Vittorio Castelli. 1996. Hierarchyscan: A
hierarchical similarity search algorithm for databases of long sequences. In
Proceedings of the Twelfth International Conference on Data Engineering. IEEE,
546–553.

[27] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar,
and Yin Tat Lee. 2023. Textbooks Are All You Need II: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463 (2023).

[28] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[29] Yu A Malkov and DA Yashunin. 2020. Efficient and Robust Approximate Nearest
Neighbor Search Using Hierarchical Navigable Small World Graphs. TPAMI
(2020).

[30] Gary Marcus. 2020. The next decade in AI: four steps towards robust artificial
intelligence. arXiv preprint arXiv:2002.06177 (2020).

[31] Sewon Min, Suchin Gururangan, Eric Wallace, Hannaneh Hajishirzi, Noah A
Smith, and Luke Zettlemoyer. 2023. SILO language models: Isolating legal risk in
a nonparametric datastore. arXiv preprint 2308.04430 (2023).

[32] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227–2240.

[33] David Nister and Henrik Stewenius. 2006. Scalable recognition with a vocabulary
tree. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), Vol. 2. Ieee, 2161–2168.

[34] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. The VLDB Journal 33, 5 (2024), 1591–1615.

[35] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed
Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient generative llm inference
using phase splitting. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 118–132.

[36] Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Dmytro Okhonko, Samuel
Broscheit, Gautier Izacard, Patrick Lewis, Barlas Oğuz, Edouard Grave, Wen-tau
Yih, et al. 2021. The web is your oyster-knowledge-intensive NLP against a very
large web corpus. arXiv preprint arXiv:2112.09924 (2021).

[37] Ruiyang Qin, Zheyu Yan, Dewen Zeng, Zhenge Jia, Dancheng Liu, Jianbo Liu,
Zhi Zheng, Ningyuan Cao, Kai Ni, Jinjun Xiong, et al. 2024. Robust Implementa-
tion of Retrieval-Augmented Generation on Edge-based Computing-in-Memory
Architectures. arXiv preprint arXiv:2405.04700 (2024).

[38] Derrick Quinn, Mohammad Nouri, Neel Patel, John Salihu, Alireza Salemi,
Sukhan Lee, Hamed Zamani, and Mohammad Alian. 2024. Accelerating Retrieval-
Augmented Generation. arXiv preprint arXiv:2412.15246 (2024).

[39] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-Context Retrieval-Augmented Lan-
guage Models. TACL (2023).

https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

[40] Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. 2024. Blended RAG:
Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic
Search and Hybrid Query-Based Retrievers. arXiv preprint arXiv:2404.07220
(2024).

[41] Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi, Tim Dettmers, Sewon Min,
Luke Zettlemoyer, and Pang Wei Koh. 2024. Scaling Retrieval-Based Language
Models with a Trillion-Token Datastore. arXiv preprint arXiv:2407.12854 (2024).

[42] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse.
2024. Dynamollm: Designing llm inference clusters for performance and energy
efficiency. arXiv preprint arXiv:2408.00741 (2024).

[43] Gemma Team. 2024. Gemma. (2024). https://doi.org/10.34740/KAGGLE/M/3301
[44] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-

angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[45] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2021. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. arXiv preprint 1910.03771 (2021).

[46] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023.
C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597 [cs.CL]

[47] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL]

[48] Zili Zhang, Chao Jin, Linpeng Tang, Xuanzhe Liu, and Xin Jin. 2023. Fast, Ap-
proximate Vector Queries on Very Large Unstructured Datasets. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). 995–
1011.

[49] Zhihao Zhang, Alan Zhu, Lijie Yang, Yihua Xu, Lanting Li, Phitchaya Mangpo
Phothilimthana, and Zhihao Jia. 2024. Accelerating retrieval-augmented language
model serving with speculation. arXiv preprint arXiv:2401.14021 (2024).

[50] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines.
Comput. Surveys (2006).

A Artifact Appendix
A.1 Abstract
This artifact includes all the necessary data, source code, and scripts
to reproduce the figures within the background, characterization,
design, and evaluation sections of this study. First, we outline the
steps for constructing retrieval indices with various configurations.
Next, we provide profiling scripts used to measure the latency, en-
ergy consumption, and accuracy of these retrieval indices, along
with several open-source inference models taken fromHuggingface.
Finally, our multi node analysis tool aggregates the system metrics
to deliver comprehensive end-to-end analytics on throughput, la-
tency, and energy for our Hermes Retrieval approach. Additional
evaluation scripts analyze the accuracy of Hermes compared to
other searching strategies.

A.2 Artifact check-list
• Program: Python and Shell
• Model: Multi-node latency and energy analysis tool provided;

retrieval index construction scripts included; Hugging Face models
publicly available.

• Data set: SPHERE (Encoded Common Crawl Subset), TriviaQA,
Natural Questions

• Run-time environment: Anaconda on Ubuntu 24.04 with CUDA
12

• Hardware: Server class Intel CPU and Nvidia GPU
• Run-time state: Anaconda Environment with installed required

packages and sudo access are required. An alternative docker image
is also available at michaeltshen/hermes-env:latest for easy setup

• Execution: Sole User
• Metrics: Normalized Discount Cumulative Gain (NDCG), Recall,
Throughput (QPS), Latency (s), Power (W), Energy (J)

• Output: Experiments produce log files (csv) and matplotlib plots.
Expected output can be found within the paper.

• Experiments:
– Hermes Accuracy Comparison to Other Search Strategies
– Index nProbe Design Space Exploration
– Cluster Size and Access Frequency Analysis
– End-to-End Hermes Latency and Energy Comparison
– TTFT Hermes Latency Analysis
– Hermes Cluster Access Energy Throughput Trend
– Hermes Different Hardware Latency Throughput Analysis
– Hermes DVFS Analysis

• How much disk space required (approximately)?:
– Docker Environment: ≈ 32GB
– Creating ISCA Plots: ≈ 32GB
– 100K Indices: ≈ 32GB
– 899M Indices: ≈ 6-7TB

• How much time is needed to prepare workflow (approxi-
mately)?:
– Setting up Environment: ≈ 15–30 Min

• How much time is needed to complete experiments (approxi-
mately)?:
– Creating ISCA Plots: ≈ 1–2 Hours
– 100K Indices: ≈ 1–2 Days
– 899M Indices: ≈ Several Weeks (Depending on Hardware)

• Publicly available?: Yes
• Code licenses (if publicly available)?:MIT
• Archived (provide DOI)?: GitHub (github.com/S4AI-CornellTech/
Hermes) and Zenodo (doi.org/10.5281/zenodo.15258027).

A.3 Description
A.3.1 How to access. Code for this paper can be accessed from
the live public GitHub repository at github.com/S4AI-CornellTech/
Hermes. The artifact is also available on Zenodo at doi.org/10.5281/
zenodo.15079515.

A.3.2 Hardware dependencies. To reproduce the results presented
in this paper, we recommend using state-of-the-art server-class
hardware. For CPUs we recommend a machine with at least 32
cores and 512 GB of memory (e.g., Intel Xeon Platinum 8380) and
high-performance NVIDIA server-grade GPUs (e.g., A6000 Ada). In
the absence of such hardware, reproduction is still feasible using
any multi-core CPU with ample memory and a compatible NVIDIA
GPU.

A.3.3 Software dependencies. For LLM inference, we use PyTorch
on NVIDIA GPUs with CUDA version 12. Our models are imple-
mented using the Hugging Face transformers library, along with
the datasets library.We also use vLLM to deployHuggingFacemod-
els efficiently and to achieve state-of-the-art inference performance.
For retrieval, we leverage the FAISS library for efficient similarity
search. To profile power consumption, we use a combination of
pyRAPL, pynvml, perf, and rapl_read.

A.3.4 Datasets. We conduct our experiments using the SPHERE
dataset, a pre-encoded subset of Common Crawl. SPHERE is avail-
able in three sizes: 100K, 100M, and 899M document subsets. These
can be accessed on Hugging Face at mohdumar/SPHERE_100K,

https://doi.org/10.34740/KAGGLE/M/3301
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2205.01068
https://github.com/S4AI-CornellTech/Hermes
https://github.com/S4AI-CornellTech/Hermes
https://zenodo.org/records/15258027
https://github.com/S4AI-CornellTech/Hermes
https://github.com/S4AI-CornellTech/Hermes
https://doi.org/10.5281/zenodo.15079515
https://doi.org/10.5281/zenodo.15079515

Hermes: Algorithm-System Co-design for Efficient Retrieval-Augmented Generation At Scale ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 3: Index Construction Customization

Configuration Explanation

Index Size Specifies the size of themonolithic index to build, or
the dataset size to use for clustered or split indices
(100K, 100M, 899M for non-synthetic indices).

Number of Indices Applicable only for split or clustered indices. Spec-
ifies how many separate indices the dataset should
be divided into.

mohdumar/SPHERE_100M, and mohdumar/SPHERE_899M. To evalu-
ate our retrieval indices, we additionally use the TriviaQA dataset.
An encoded version of the dataset queries is provided at triviaqa/
triviaqa_encodings.npy.

A.3.5 Models.

• Multi Node Latency Aggregation: Provided at modeling/
latency_sim.py

• Multi Node EnergyAggregation: Provided at modeling/dvfs
_sim.py

• FAISS Search Indices: Construction Scripts Provided at index/
• Huggingface Models: Publicly Available on the Huggingface
model hub.

A.4 Installation
To set up Hermes, you can install it natively by cloning the public
GitHub repository and configuring the provided Anaconda envi-
ronment. Alternatively, a pre-built Docker image (approximately
30 GB) is available for installation.

A.5 Experiment workflow
This workflow describes how to set up the Hermes experimental
environment natively. Steps 1 - 6 can be skipped by pulling the
pre-built docker image instead.

(1) Set up Conda environment and clone GitHub repository.
(2) Download the encoded TriviaQA dataset.
(3) Install required dependencies in the Conda environment,

including faiss, transformers, vllm, datasets, pynvml,
pyRAPL, and other required dependencies.

(4) Resolve any torchvision dependencies, if applicable.
(5) Use sudo to enable access to RAPL energy metrics.
(6) Build rapl-read from the uarch-configure repository.
(7) ConstructMonolithic, Split, Flat, andHermes-clustered search

indices.
(8) Profile search latency and power consumption across differ-

ent configurations.
(9) Measure latency and power usage of state-of-the-art encoder

and inference models across different configurations.
(10) Generate cluster access traces from the encoded TriviaQA

dataset.
(11) Perform multi-node aggregation for latency and energy pro-

filing.
(12) Evaluate the accuracy of each search index.
(13) Generate and visualize plots for analysis.

A.6 Evaluation and expected results
By following the workflow outlined in Section A.5, the results
presented in Figures 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, and 21
can be reproduced.While we do not provide scripts for Figures 7 and
10 (since they require constructing and profiling multiple indices of
varying sizes, which would substantially increase the complexity of
the workflow), these figures primarily serve as background and are
not central to the paper’s core contributions. To maintain a more
streamlined workflow, we chose not to include them. Nonetheless,
all figures can be regenerated using the approaches described below.

• Fig 6: Build Indices of the specified size in A.5 Step 7 and
collect profiled data from Steps 8 and 9

• Fig 7: Build Indices of the specified size in A.5 Step 7 and
collect profiled data from Step 8

• Fig 10: Build Indices of the specified size in A.5 Step 7 and
collect profiled data from Steps 8 and 9

• Fig 11: Build Indices in A.5 Step 7 and then run the accuracy
evaluation from Step 12.

• Fig 12: Build Indices in A.5 Step 7 and collect profiled data
from Step 8. Then run the accuracy evaluation from Step 12.

• Fig 13: Build Indices in A.5 Step 7 and collect trace data from
Step 10.

• Fig 14: Build Indices of the specified size in A.5 Step 7 and
collect profiled data from Step 8 and 9. Then use the multi-
node aggregation tools from step 11.

• Fig 16: Build Indices of the specified size in A.5 Step 7 and
collect profiled data from Step 8 and 9. Then use the multi-
node aggregation tools from step 11.

• Fig 17: Build Indices in A.5 Step 7 and collect profiled data
of specific models on specific hardware from Step 8 and 9.
Then use the multi-node aggregation tools from step 11.

• Fig 18: Build Indices in A.5 Step 7 and collect profiled data
from Step 8. Then use the multi-node aggregation tools from
step 11.

• Fig 19: Build Indices of various sizes in A.5 Step 7 and collect
profiled data of different model configs in Step 8 and Step 9.

• Fig 20: Build Indices in A.5 Step 7 and collect profiled data
of different model configs in Step 8 on several different hard-
ware platforms. Then use the multi-node aggregation tools
from step 11.

• Fig 21: Build Indices in A.5 Step 7 and collect profiled data
of different model configs in Step 8. Then use the multi-node
aggregation tools from step 11.

A.7 Experiment customization
The source code for index construction and profiling is designed
to be highly customizable, allowing users to specify the types of
indices to build and explore a wide range of Hermes-based RAG
configurations via command-line arguments to the provided scripts.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

ISCA ’25, June 21–25, 2025, Tokyo, Japan Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta

Table 4: Index Profiling Customization

Configuration Explanation

nProbe How many centroids to search in the search index
Sample and Deep nProbe Applicable only for clustered indices in the Hermes

search. Specifies howmany centroids to search dur-
ing the sampling and deep search.

Batch Size How many queries are in each index search
Queries Option to change the dataset if you have access to

another encoded dataset
Retrieved Docs How many documents to retrieve per query for

each search
Number of Threads How many threads to use per search

Table 5: Model Profiling Customization

Configuration Explanation

Model Name The target LLM model. A full list of sup-
ported models is available in the VLLM docu-
mentation: https://docs.vllm.ai/en/latest/models/
supported_models.html

Number of GPUs Number of GPUs to use for inference.
Batch Size Number of queries processed per inference batch.
Input Length Input token sequence length per query.
Output Length Number of tokens to generate per query.

https://docs.vllm.ai/en/latest/models/supported_models.html
https://docs.vllm.ai/en/latest/models/supported_models.html

	Abstract
	1 Introduction
	2 Background: Retrieval-Augmented Generation
	2.1 Index Creation
	2.2 Retrieval Enhanced Inference

	3 Understanding System Bottlenecks in RAG
	4 Hermes Design Overview
	4.1 Distributed Retrieval Indices
	4.2 Hierarchical Search via Document Sampling

	5 Experimental Setup
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

