
Evaluating the Impact of Branch Predictor Design
on Spectre Attacks

Michael Shen
Northeastern University

Boston, Massachusetts, USA
shen.mich@northeastern.edu

Derek Rodriguez
Northeastern University

Boston, Massachusetts, USA
rodriguez.der@northeastern.edu

David Kaeli
Northeastern University

Boston, Massachusetts, USA
kaeli@ece.neu.edu

Abstract—Security research targeting today’s high-
performance CPU microarchitectures helps to insure that
tomorrow’s program execution will be secure and reliable.
With the adoption of branch predictors and speculative
execution to overcome data and control dependencies on
nearly every microprocessor on the market today, timing
side channel attacks have become a critical issue. In this
paper we explore how different branch predictor designs,
implemented on the SonicBOOM RISC-V architecture,
can improve performance, but are also susceptible to side
channels.

I. INTRODUCTION

Given the need for performance improvements by
microprocessor manufacturers (i.e., AMD, Intel, and
ARM) to deliver the fastest design, we continue to
see microarchitecture improvements. While this focus
has produced highly efficient microprocessors, there has
not been enough attention devoted to considering the
vulnerabilities of these features.

Execution time on a microprocessor can vary when
performing the same operation with different input data
values, allowing malicious users to infer knowledge
about what is being executed without permission to
do so. The recent news of Spectre attacks [1] impacts
a large number of commercial microprocessors. This
attack targets branch prediction hardware to leak secret
data to an attacker. Spectre is just one of many hardware
attacks that has been reported to exploit various design
features on CPU architectures. There have been a number
of high-profile attacks reported over the past 5 years:
TLBleed [2], Meltdown [3], and Foreshadow [4].

Even though researchers continue to make progress
on mitigating these vulnerabilities in new microarchi-
tectures (e.g., the Tage branch predictor possesses some
inherent architectural resistance to specific variants of
Spectre), new vulnerabilities are continually being re-
ported. For instance, within the last year HertzBleed [5],

a vulnerability that affects AMD/Intel processors, and
PACMAN [6], an attack on Apple’s M1 SoCs, have been
reported.

The goal of this research is to further our understand-
ing of the relationship between branch prediction design
choices and their potential for exposing intrusion attack
surfaces for side-channel attacks similar to Spectre.
By quantitatively evaluating changes made during the
microarchitectural design phase, computer architects can
better characterize the security and performance of next
generation architectures before they are committed to
silicon. By tempering microarchitectural choices in terms
of their potential to expose security holes, the number
eventual vulnerabilities will be reduced, reducing the
cost to remediate these insidious issues.

In this paper we present BranchBench, a tool for
generating code sequences of branch instructions that
are paired with timing information. We demonstrate how
these benchmarks can be used to evaluate microarchi-
tectural features such as branch predictors, in terms of
side-channel resilience and performance.

II. BACKGROUND

A. Spectre & Side Channel Attacks

Spectre [1] is a class of side channel attacks that ex-
ploits the execution features of many CPU architectures,
including branch predictors and speculative execution. A
simple fix would be to disable these features to mitigate
the effects of Spectre, but both of these features provide
major performance advantages for the CPU microarchi-
tecture [7].

Branches can be taken or not taken, supporting the
execution of high-level language syntax that implements
if/then/else clauses and different forms of conditional
loops. The microprocessor stalls whenever a branch is
incorrectly predicted, since the pipeline needs to be
flushed, and instructions on the correct path need to be

fetched and decoded. Additionally, speculative execution
and branch predictors make verifying a microarchitecture
much more difficult. However, by predicting whether
branches are taken or not taken ahead of time, selective
instructions can be speculatively executed early, improv-
ing the overall instruction throughput within a compute
pipeline.

To test a timing-based side channel, we can execute
an instruction sequence which will cause the branch
predictor to mispredict. The potential side effects of a
branch misprediction (e.g., instructions that are fetched
and speculatively executed, and the recovery of mis-
predicted instruction information) can then be exploited
using the side channel.

B. Akita

Akita is an event-driven microarchitectural simulation
framework. Akita’s framework is reusable and allows for
efficient development for modeling different CPU/GPU
architectures [8]. Akita’s engine includes features, such
as components and ports, that allow users to easily
change aspects of a simulator design (e.g., adding branch
predictors).

C. SonicBOOM

In this work we utilize the SonicBOOM microar-
chitecture, an out of order core that targets the RISC-
V instruction set. SonicBOOM was implemented using
ChipYard, which generates Verilog from source code that
is simulated in Verilator [9].

D. GShare

The Gshare [10] branch predictor is a microarchi-
tecture structure that is used to predict branches in a
microprocessor pipeline. Gshare uses a history register
to record global history and notes the address of the
branch instruction. When a branch instruction is encoun-
tered, the Gshare predictor indexes into a table of 2-bit
counters using the location of the instruction (i.e., the
program counter) XORed with the past history of all
branches (the history is a binary vector of bits, indicating
whether past branches were taken (1) or not-taken (0)).
The history length can vary depending on the specific
implementation. The 2-bit counters take on one of four
values, (00) strongly not-taken, (01) weakly not-taken,
(10) weakly taken and (11) strongly taken. The counter is
incremented when the branch is taken, and decremented
when not taken. The counter saturates at values of (00)
and (11). The 2-bit counters are initialized to a weakly
not-taken (01) state. Future branch instructions either

utilize the existing counter entry for that branch or
allocate a new entry to predict the outcome of future
executions of this branch.

E. Tage

The Tage predictor uses several predictor tables of
geometrically increasing size, each with its own accom-
panying global history register. Each entry of the pre-
dictor table consists of a prediction counter, usefulness
counter, and a tag. The history of each table is hashed
with the incoming instruction to produce the current
branch’s prediction. The table with the longest history
is then selected for the actual prediction.

III. METHODOLOGY

A. BranchBench

Yori [11] is a RISC-V microarchitectural simulator
built on Akita’s event-driven simulation framework and
SonicBOOM’s [12] out of order execution microarchi-
tecture. We are expanding the current capabilities of
Yori to include simulation models of the GShare and
Tage branch predictors. In order to validate the accuracy
of our predictors, we have developed benchmarks using
BranchBench.

The benchmarks generated by BranchBench contain
sequences of assembly instructions, paired with timing
data, so that we can better observe the simulated behavior
of each branch (as seen in Listing 1). BranchBench is
easily configurable so that we can vary the number of
branch iterations and the architecture. These benchmarks
are used to verify our work against the Chipyard standard
using Verilator.

We execute the generated programs from Branch-
Bench on Spike [13] and the reference implementation
of SonicBOOM[12] via Verilator simulation. This gen-
erates two sets of instruction-level traces that contain
information on branch instruction execution. By cross-
referencing the branch instruction outputs and treating
SonicBOOM’s output as ground truth, we can verify the
implementation of our branch predictors.

B. Expanding Yori’s Feature Set

While Yori can faithfully simulate the RISC-V integer
and CSR (Control Status Register) instruction set, easily
understanding instruction execution is challenging to
do with Yori’s current implementation. Interpreting and
tracking how instructions travel through the microarchi-
tecture is difficult, even when utilizing techniques such
as breakpoint debugging. Fetch packet information that

1 #include <stdint.h>
2 #include <stdio.h>
3 #ifdef ARCH_GENERIC
4 #include <time.h>
5 #endif
6 #ifdef ARCH_AMD64
7 #include <x86intrin.h>
8 #endif
9

10 void function0() {
11 int out, junk, addr;
12 /* READ TIMER */
13 uint64_t time1 = __rdtscp(& junk);
14 printf("%ld\\n", time1);
15 }
16

17 void function1() {
18 int out, junk, addr;
19 /* READ TIMER */
20 uint64_t time1 = __rdtscp(& junk);
21 printf("%ld\\n", time1);
22 }
23

24 void function2() {
25 int out, junk, addr;
26 /* READ TIMER */
27 uint64_t time1 = __rdtscp(& junk);
28 printf("%ld\\n", time1);
29 }
30

31 int main() {
32 for(size_t i = 0; i < 2; i++){
33 function2();
34 function1();
35 function0();
36 }
37 return 0;
38 }

Listing 1: An example of a Benchmark (written in
C) that is generated by BranchBench. The example
calls 3 functions, and is run for 2 iterations targeting
a generic architecture.

contains essential information (e.g., instruction, desti-
nation, program counter, time of execution, etc.) must
be decoded several times before being readable. This
process is arduous and makes Yori difficult to use. We
are currently in the process of extending the features of
Yori to improve upon this instruction-level observability.

After expanding the current capabilities of Yori, our
plan is to utilize formal verification tools, such as Check-
Mate [14], to identify potential areas of vulnerabilities
while assessing impacts on performance. Checkmate
generates tests that the user can use to target different
aspects of the hardware under varying conditions. We
can use this enhanced version of Yori to detect and

analyze potential avenues for Spectre attacks. We will
additionally be able to map events precisely to a formal
model of execution [11]

With Checkmate integrated into Yori, we can further
explore novel approaches to protect the microarchitecture
(e.g., implementing unique program execution checking
(UPEC)) [15].

IV. RESULTS & DISCUSSION

Using BranchBench, we evaluate the performance of
two different branch predictor designs: Gshare and a
2-bit branch predictor. Our implementation of Gshare
maintains a global history register that is eight bits long
and uses the last eight bits of the program counter.
This means our Gshare implementation contains a matrix
table of 256 unique 2-bit counter entries.

Number of Branch Instructions 70,998
Taken Branches 51,161

Not Taken Branches 19,837
Total Instruction Count 199,991

TABLE I: BranchBench benchmark RISC-V instruc-
tion level information.

The ELF binary of the benchmark shown in Listing 1
is used to generate the instruction counts reported in
Table I after being run through Spike. By inspecting the
program counters associated with branch instructions, we
are able to determine the number of taken versus not
taken branches. This information is included in Table I.

Gshare 2-Bit Predictor
Branch Hits 70,877 59,544

Branch Misses 121 11,454
Hit Rate 99.83% 83.87%

TABLE II: Branch predictor hit rates for
BranchBench-generated benchmarks for the Gshare,
and 2-bit predictors.

Gshare 2-Bit Predictor
Taken Branch Hits 51,040 42,676

Taken Branch Misses 121 8485
Not Taken Branch Hits 19,837 16,868

Not Taken Branch Misses 0 2969

TABLE III: Detailed branch predictor statistics.

The branch instruction execution data produced by
Spike with our implementations for the Gshare and 2-
bit predictors is shown in Table II and Table III. Our

BranchBench benchmark in conjunction with our branch
predictor designs show that Gshare is 19% more accurate
compared to the 2-Bit predictor and can speculatively
handle not taken branches more consistently. We hope
to extend this comparison to include the Tage predictor,
which is currently in the process of being implemented.
Given Tage’s resistance to some Spectre variants and
added layers of complexity, BranchBench benchmark’s
predictor performance data will be useful for examining
the performance trade-off.

By using Branchbench benchmarks, we can quickly
generate an abundance of branch instructions in RISC-V
ELF binaries. In the future, timing register accesses will
be used when simulating Spectre attacks. This gives the
user additional observability on how branch predictors
perform at an instruction level with Spectre attacks.

V. RELATED WORK

Microarchitectural simulators are an essential tool for
both monitoring and analyzing performance metrics,
supporting efforts made by researchers to make hardware
more secure. FPGA-based simulators such as Firesim
are capable of multi-core simulation and can reliably
reproduce Spectre attacks using BOOM’s microarchitec-
ture [16]. Zsim is another event-driven microarchitectural
simulator that has been used to test defenses against
cache-based timing related side-channel attacks [17].
MI6 [18] is a speculative out of order processor capable
of FPGA simulation based on RiscyOO [19] and [20]
Sanctum. MI6 explores the mitigation and performance
impact associated with Secure Enclaves, instruction-level
code that isolates and encrypts data.

Coppelia and Speculator, like Checkmate, can be used
to identify exploits in the hardware and potential security
threats [21], [22]. Coppelia is a tool that generates
exploits in order for microarchitectures to contextualize
security threats, while Speculator acts as a debugger that
provides metrics relevant for identifying vulnerabilities
similar to Spectre (i.e., program counters, branching
instructions).

Previous research initiatives have made progress de-
veloping simulators targeting specific architectures and
mitigating some variants of Spectre. Yori aims to im-
prove and build upon this with our usage of the Akita
framework. Akita’s framework gives us the ability to
swap out components, allowing for the potential to test
different microarchitectures and attacks within a single
simulator.

VI. CONCLUSION

The goal of this project is to develop a methodology
that academia and industry can use to evaluate how
microarchitectural changes affect performance, as well
as expose potential vulnerabilities, associated with a
microarchitecture. In this paper we described how our
BranchBench tool can be used to evaluate various aspects
of a microarchitecture’s performance. In the future, we
plan to incorporate BranchBench with a verification
framework, and integrate this as part of our RISC-V
BOOM simulator, Yori. We expect that Yori will be used
to study various microarchitectures and provide reliable
feedback on performance, as well as security. This will
aid researchers working on hardware security to develop
defenses against side channel attacks such as Spectre.

VII. ACKNOWLEDGEMENTS

The authors of this paper would like to thank: North-
eastern’s Undergraduate Research and Fellowship office
for their support through a PEAK Summit Grant; The
Center for Hardware and Embedded Systems Security
and Trust (CHEST) for their advice and support with
this project; Derek Rodriguez for his mentorship and
guidance throughout the course of this project; and Dr.
David Kaeli for his mentorship and support throughout
this project and my continued research endeavors.

REFERENCES

[1] N. Abu-Ghazaleh, D. Ponomarev, and D. Evtyushkin, “How the
Spectre and Meltdown hacks really worked,” IEEE Spectrum,
vol. 56, no. 3, pp. 42–49, 2019.

[2] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug.
2018, pp. 955–972.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg,
and R. Strackx, “Meltdown: Reading Kernel Memory from
User Space,” Commun. ACM, vol. 63, no. 6, p. 46–56, may
2020. [Online]. Available: https://doi.org/10.1145/3357033

[4] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and
Y. Yarom, “Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution,” Technical
report, 2018.

[5] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher,
and D. Kohlbrenner, “Hertzbleed: Turning power side-channel
attacks into remote timing attacks on x86,” in Proceedings of
the USENIX Security Symposium (USENIX), 2022.

https://doi.org/10.1145/3357033

[6] J. Ravichandran, W. T. Na, J. Lang, and M. Yan,
“PACMAN: attacking arm pointer authentication with
speculative execution,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser.
ISCA ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 685–698. [Online]. Available:
https://doi.org/10.1145/3470496.3527429

[7] D. Kaeli and P.-C. Yew, Speculative Execution In High Perfor-
mance Computer Architectures (Chapman and Hall/Crc Com-
puter and Information Science Series). USA: CRC Press, Inc.,
2005.

[8] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong,
S. Treadway, Y. Bao, S. Hance, C. McCardwell, V. Zhao et al.,
“MGPUSim: enabling multi-GPU performance modeling and
optimization,” in Proceedings of ISCA-46, 2019, pp. 197–209.

[9] V. Karakostas, K. Nikas, N. Koziris, D. N. Pnevmatikatos, and
N. C. Papadopoulos, “Enabling Virtual Memory Research on
RISC-V with a Configurable TLB Hierarchy for the Rocket
Chip Generator,” in CARRV 2020, 2020, pp. 1–7.

[10] S. Mittal, “A Survey of Techniques for Dynamic Branch Predic-
tion,” Concurrency and Computation Practice and Experience,
vol. 31, 04 2018.

[11] G. Knipe, D. Rodriguez, F. Yunsi, and D. Kaeli, “RISC-
V Microarchitecture Simulation State Enumeration,” in Fifth
Workshop on Computer Architecture Research with RISC-V
(CARRV 2021), 2021, pp. 1–6.

[12] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Son-
icboom: The 3rd generation berkeley out-of-order machine,”
in Fourth Workshop on Computer Architecture Research with
RISC-V (CARRV 2020), 2020, pp. 1–7.

[13] A. Waterman, “Risc-v spike,” 2022. [Online]. Available:
https://github.com/riscv/riscv-tools

[14] C. Trippel, D. Lustig, and M. Martonosi, “Security Verification
via Automatic Hardware-Aware Exploit Synthesis: The Check-
Mate Approach,” IEEE Micro, vol. 39, no. 3, pp. 84–93, 2019.

[15] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel,
and W. Kunz, “A formal approach for detecting vulnerabilities
to transient execution attacks in out-of-order processors,” in
2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1–6.

[16] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang,
K. Kovacs, B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic,
“FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture
(ISCA), 2018, pp. 29–42.

[17] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “DAWG: a defense against cache timing attacks
in speculative execution processors,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 974–987.

[18] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind,
and S. Devadas, “Mi6: Secure enclaves in a speculative
out-of-order processor,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: Association for
Computing Machinery, 2019, p. 42–56. [Online]. Available:
https://doi.org/10.1145/3352460.3358310

[19] S. Zhang, A. Wright, T. Bourgeat, and Arvind, “Composable
building blocks to open up processor design,” in Proceedings
of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-51. IEEE Press, 2018, p.

68–81. [Online]. Available: https://doi.org/10.1109/MICRO.
2018.00015

[20] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
hardware extensions for strong software isolation,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, Aug. 2016, pp. 857–874. [Online].
Available: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/costan

[21] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-
to-end automated exploit generation for validating the security
of processor designs,” in 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2018, pp.
815–827.

[22] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda,
W. Robertson, and A. Kurmus, “Speculator: A tool to analyze
speculative execution attacks and mitigations,” in Proceedings
of the 35th Annual Computer Security Applications Conference
(San Juan, Puerto Rico) (ACSAC ’19), 2019, pp. 747–761.

https://doi.org/10.1145/3470496.3527429
https://github.com/riscv/riscv-tools
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1109/MICRO.2018.00015
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan

	Introduction
	Background
	Spectre & Side Channel Attacks
	Akita
	SonicBOOM
	GShare
	Tage

	Methodology
	BranchBench
	Expanding Yori's Feature Set

	Results & Discussion
	Related Work
	Conclusion
	Acknowledgements
	References

